

#### **CAMBRIDGE INTERNATIONAL EXAMINATIONS**

GCE Advanced Subsidiary Level and GCE Advanced Level

# MARK SCHEME for the November 2003 question papers

| 9701 CHEMISTRY |                                                                |  |  |  |  |
|----------------|----------------------------------------------------------------|--|--|--|--|
| 9701/01        | Paper 1 (Multiple Choice), maximum raw mark 40                 |  |  |  |  |
| 9701/02        | Paper 2 (Theory 1 – Structured Questions), maximum raw mark 60 |  |  |  |  |
| 9701/03        | Paper 3 (Practical 1), maximum raw mark 25                     |  |  |  |  |
| 9701/04        | Paper 4 (Theory 2 – Structured Questions), maximum raw mark 60 |  |  |  |  |
| 9701/05        | Paper 5 (Practical 2), maximum raw mark 30                     |  |  |  |  |
| 9701/06        | Paper 6 (Options), maximum raw mark 40                         |  |  |  |  |

These mark schemes are published as an aid to teachers and students, to indicate the requirements of the examination. They show the basis on which Examiners were initially instructed to award marks. They do not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

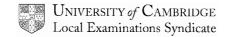
All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

 CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2003 question papers for most IGCSE and GCE Advanced Level syllabuses.




# GCE A AND AS LEVEL

# MARK SCHEME

MAXIMUM MARK: 40

**SYLLABUS/COMPONENT: 9701/01** 

CHEMISTRY
Paper 1 (Multiple Choice)

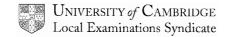


| Page 1 | Mark Scheme                             | Syllabus | Paper |
|--------|-----------------------------------------|----------|-------|
|        | A/AS LEVEL EXAMINATIONS – NOVEMBER 2003 | 9701     | 1     |

| Question<br>Number | Key | Question<br>Number | Key |
|--------------------|-----|--------------------|-----|
| 1                  | С   | 21                 | С   |
| 2                  | В   | 22                 | В   |
| 3                  | Α   | 23                 | С   |
| 4                  | В   | 24                 | Α   |
| 5                  | С   | 25                 | С   |
|                    |     |                    |     |
| 6                  | D   | 26                 | В   |
| 7                  | В   | 27                 | В   |
| 8                  | С   | 28                 | В   |
| 9                  | D   | 29                 | D   |
| 10                 | Α   | 30                 | Α   |
|                    |     |                    |     |
| 11                 | С   | 31                 | В   |
| 12                 | С   | 32                 | С   |
| 13                 | В   | 33                 | В   |
| 14                 | D   | 34                 | D   |
| 15                 | В   | 35                 | Α   |
|                    |     |                    |     |
| 16                 | Α   | 36                 | С   |
| 17                 | Α   | 37                 | С   |
| 18                 | D   | 38                 | В   |
| 19                 | В   | 39                 | В   |
| 20                 | С   | 40                 | D   |

**TOTAL 40** 



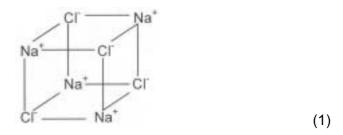

# GCE A AND AS LEVEL

# MARK SCHEME

MAXIMUM MARK: 60

**SYLLABUS/COMPONENT: 9701/02** 

CHEMISTRY
Theory 1 (Structured Questions)




| Page 1 | Mark Scheme                             | Syllabus | Paper |
|--------|-----------------------------------------|----------|-------|
|        | A/AS LEVEL EXAMINATIONS – NOVEMBER 2003 | 9701     | 2     |

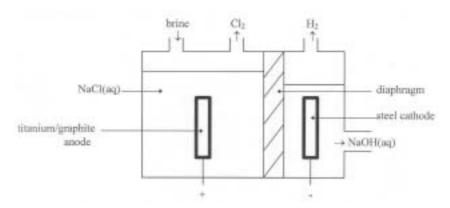
**1 (a)** ionic<sup>-</sup> (1)

 $Na^{+}$  and  $Cl^{-}$  (1)

arranged in cubic lattice (diagram required)



each  $na^+$  ion surrounded by six  $Cl^-$  ions or each  $Cl^-$  ion surrounded by six  $Na^+$  ions may be in diagram or stated in words


**(1) [4]** 

(b) in the solid, the ions cannot move (1)

in the melt, the ions move **or** carry the charge/current

(1) **[2]** 

(c) (i)



steel **or** inert cathode (1)

titanium **or** graphite **or** inert anode (1)

(ii) at the anode

$$2Cl(aq) \rightarrow Cl_2(g) + 2e^- \tag{1}$$

at the cathode

$$2H^{+}(aq) + 2e^{-} \rightarrow H_{2}(g)$$

or

$$2H_2O(I) + 2e^- \rightarrow H_2(g) + 2OH^-(aq)$$
 (1)

|   |     | 2     |                                                                                                           | rllabus<br>9701 | Paper<br>2               |              |
|---|-----|-------|-----------------------------------------------------------------------------------------------------------|-----------------|--------------------------|--------------|
|   |     |       | ·                                                                                                         |                 |                          |              |
|   |     | (iii) | hydrogen – ammonia, HC <i>l</i> , margarine, fuel                                                         |                 | (1)                      |              |
|   |     |       | sodium hydroxide – soap, paper, bleach                                                                    |                 | (1)                      |              |
|   |     | (iv)  | Cl <sub>2</sub> produced reacts with the NaOH(aq)                                                         |                 | (1)                      |              |
|   |     |       | $Cl_2$ + 2NaOH $\rightarrow$ NaC $l$ O + NaC $l$ + H $_2$ O                                               | [To             | (1)<br>otal: <b>14</b> n | [9]<br>nax]  |
| 2 | (a) |       | $C_8H_{18} + 12\frac{1}{2}O_2 \rightarrow 8CO_2 + 9H_2O$                                                  |                 | (1)                      | [1]          |
|   | (b) | (i)   | nitrogen                                                                                                  |                 | (1)                      |              |
|   |     | (ii)  | from the combustion of the fuel                                                                           |                 | (1)                      | [2]          |
|   | (c) | (i)   | CO reacts with haemoglobin/reduces absorption of oxy                                                      | gen             |                          |              |
|   |     |       | nitrogen oxides/NO/NO <sub>2</sub> /NO <sub>x</sub> acidic/breathing problems/acid rain/photochemical smo | g               |                          |              |
|   |     |       | hydrocarbons – breathing problems                                                                         |                 |                          |              |
|   |     |       | SO <sub>2</sub> – breathing problems/acid rain                                                            |                 | (any 2)                  |              |
|   |     | (ii)  | $CO + NO \rightarrow CO_2 + \frac{1}{2}N_2$                                                               |                 |                          |              |
|   |     |       | or CO + $\frac{1}{2}$ O <sub>2</sub> $\rightarrow$ CO <sub>2</sub>                                        |                 |                          |              |
|   |     |       | NO + CO $\rightarrow$ CO <sub>2</sub> + $\frac{1}{2}$ N <sub>2</sub> (again)                              |                 |                          |              |
|   |     |       | or NO + HC $\rightarrow$ CO <sub>2</sub> + H <sub>2</sub> O + N <sub>2</sub> (qualitative)                |                 |                          |              |
|   |     |       | or NO + $H_2 \rightarrow H_2O + \frac{1}{2}N_2$                                                           |                 | (1)                      |              |
|   |     | (iii) | toxic gases are not removed until the catalytic converte warmed up                                        | r has           |                          |              |
|   |     |       | or there is too much CO to be completely removed as i (c)(ii)                                             | n               |                          |              |
|   |     |       | <b>or</b> the converter may become less efficient over a periodime/gets clogged up                        | od of           |                          |              |
|   |     |       | or CO <sub>2</sub> passes through – causes global warming                                                 |                 |                          |              |
|   |     |       | or SO <sub>2</sub> passes through – causes acid rain                                                      |                 | (1)<br><b>[Tot</b> a     | [5]<br>I: 8] |

|   | Page 3 |       | Mark Scheme                                                                                         | Syllabus         | Paper          |     |
|---|--------|-------|-----------------------------------------------------------------------------------------------------|------------------|----------------|-----|
|   |        |       | A/AS LEVEL EXAMINATIONS – NOVEMBER 2003                                                             | 9701             | 2              |     |
| 3 | (a)    | (i)   | energy/enthalpy change when 1 mol of a compound formed from its elements                            | d is             | (1)            |     |
|   |        |       | at 25°C and 1 atm                                                                                   |                  | (1)            |     |
|   |        | (ii)  | $H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(I)$                                                    |                  | (1)            |     |
|   | (b)    | (i)   | Ca + $2H_2O \rightarrow Ca(OH)_2 + H_2$                                                             |                  | (1)            |     |
|   |        | (ii)  | heat released = $mc\Delta T$                                                                        |                  | (1)            |     |
|   |        |       | = 200 x 4.2 x 12.2 = 10.25 kJ                                                                       |                  | (1)            |     |
|   |        | (iii) | $\Delta H_{\text{reacn}} = 40.1 \text{ x } (-10.25) = -411 \text{ kJ mol}^{-1} \text{ sign neces}$  | essary           |                |     |
|   |        |       | for ecf, $\Delta H_{\text{reacn}} = 40.1 \text{ x [answer to (b)(ii)]}$                             |                  | (1)            | [4] |
|   | (c)    | (i)   | The enthalpy (energy) change for converting reacta products                                         | ants into        | (1)            |     |
|   |        |       | is the same regardless of the route taken                                                           |                  | (1)            |     |
|   |        | (ii)  | Ca(s) + $2H_2O(I) \rightarrow Ca(OH)_2(aq) + H_2(g) \Delta H = \Delta H + \frac{4}{5}$ 2 x (-286) x | <del>-4</del> 11 |                |     |
|   |        |       | $\Delta H_{\text{reacn}} = x - 2(-286) = -411$                                                      |                  | (1)            |     |
|   |        |       | $x = -411 + 2(-286) = -983 \text{ kJ mol}^{-1}$<br>sign necessary                                   |                  | (1)            |     |
|   |        |       | for ecf, $x = ans. to (b)(iii) + (-572)$                                                            |                  |                | [4] |
|   | (d)    |       | 40.1 g of Ca give 24000 cm <sup>3</sup> of H <sub>2</sub>                                           |                  | (1)            |     |
|   |        |       | 1 g of Ca gives $\frac{24000}{40.1}$ = 598.5 cm <sup>3</sup> units needed                           |                  |                |     |
|   |        |       | allow 40 g of Ca giving 600 cm <sup>3</sup>                                                         |                  | (1)<br>[Total: |     |
| 4 | (a)    | (i)   | dehydration/elimination/cracking                                                                    |                  | (1)            |     |
|   |        |       | $C_2H_5OH - H_2O \rightarrow CH_2 = CH_2$                                                           |                  |                |     |
|   |        |       | or $C_2H_5OH \rightarrow CH_2 = CH_2 + H_2O$                                                        |                  | (1)            | [2] |
|   | (b)    | (i)   | yellow/red/orange/brown to colourless                                                               |                  |                |     |
|   |        |       | do <b>not</b> allow clear or white                                                                  |                  | (1)            |     |
|   |        | (ii)  | $CH_2 = CH_2 + Br_2 \rightarrow CH_2BrCH_2Br$<br>purple to colourless                               |                  | (1)<br>(1)     |     |

|     |       | A/AS LEVEL EXAMINATIONS – NOVEMBER 2003 9701                                                                                                                        | 2                                   |
|-----|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------|
| (c) | (i)   | $CH_2 = CH_2 + H_2O + [O] \rightarrow CH_2OHCH_2OH$<br>- $CH_2CH_2CH_2CH_2$ 'tails required'                                                                        | (1) <b>[4</b><br>(1)                |
|     |       | -CH <sub>2</sub> CHC <i>I</i> CH <sub>2</sub> CHC <i>I</i> - 'tails required'                                                                                       | (1) <b>[2</b>                       |
| (d) | (i)   | $C_6H_{10}$                                                                                                                                                         | (1)                                 |
|     | (ii)  | $M_{\rm r} = 82$                                                                                                                                                    | (1)                                 |
|     | (iii) | % carbon = $\frac{72 \times 100}{82}$ = 87.8%                                                                                                                       | (1) <b>[3</b><br><b>[Total: 1</b> 1 |
| (a) | (i)   | $CH_3CH_2CH_2CH_2Br + NaOH \rightarrow $ or $OH^-$                                                                                                                  |                                     |
|     |       | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH <sub>2</sub> OH + NaBr<br>or Br <sup>-</sup>                                                                     | (1)                                 |
|     | (ii)  | nucleophilic substitution                                                                                                                                           | (1)                                 |
|     | (iii) | presence of $C^{\delta_+}$ – $Br^{\delta}$ dipole (1)                                                                                                               |                                     |
|     |       | attack of $OH^-$ on $C^{\delta+}$ (1)                                                                                                                               |                                     |
|     |       | formation of intermediate                                                                                                                                           |                                     |
|     |       | C <sub>3</sub> H <sub>7</sub>                                                                                                                                       |                                     |
|     |       | C <sub>3</sub> H <sub>7</sub><br> <br>  HO Gr. Br                                                                                                                   |                                     |
|     |       | н                                                                                                                                                                   |                                     |
|     |       | (1)                                                                                                                                                                 |                                     |
|     |       | loss of Br <sup>-</sup> (1)                                                                                                                                         | (3 max)                             |
|     |       | may all be in a mechanism                                                                                                                                           | [5                                  |
| (b) | (i)   | elimination/dehydrobromination                                                                                                                                      | (1)                                 |
|     | (ii)  | I $CH_3CH_2CH = CH_2$                                                                                                                                               | (1)                                 |
|     |       | II $CH_3C = CH_2$                                                                                                                                                   |                                     |
|     |       | CH <sub>3</sub>                                                                                                                                                     | (1)                                 |
|     | (iii) | I CH <sub>3</sub> CH <sub>2</sub> CO <sub>2</sub> H                                                                                                                 | (1)                                 |
|     |       | II CH <sub>3</sub> COCH <sub>3</sub>                                                                                                                                | (1) [5                              |
| (c) |       | (CH <sub>3</sub> ) <sub>3</sub> CBr KCN/ethanol, (CH <sub>3</sub> ) <sub>3</sub> CCN dil H <sup>+</sup> , (CH <sub>3</sub> ) <sub>3</sub> CCO <sub>2</sub> H reflux |                                     |
|     |       | (1) (1) (1)                                                                                                                                                         | [3<br>[Total: 13                    |

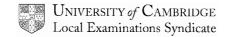
Mark Scheme

**Syllabus** 

Paper

Page 4




# GCE A AND AS LEVEL

# MARK SCHEME

**MAXIMUM MARK: 25** 

**SYLLABUS/COMPONENT: 9701/03** 

CHEMISTRY Practical 1



| Page 1 | Mark Scheme               | Syllabus | Paper |
|--------|---------------------------|----------|-------|
|        | CHEMISTRY – NOVEMBER 2003 | 9701     | 3     |

N.B. Boxed references within this marking scheme relate to the accompanying booklet of Standing Instructions.

#### **Question 1**

#### Table 1.1

Give **one mark** if all weightings (1<sup>st</sup> 4 lines of Table 1.1) ar to 2 d.p. or better (1)

### **Accuracy**

mass of water droven off From the Supervisor's script calculate mass of anhydrous sodium carbonate

Work to 2 decimal places. Use the lowest mass after heating. Record the Supervisor's value as a ringed value to the side of Table 1.1.

Calculate the same ratio for each candidate, recorded alongside the |Supervisor's value and calculate the difference between Supervisor and candidate. Award marks as follows:

| Mark | Difference to Supervisor |               |               |               |               |
|------|--------------------------|---------------|---------------|---------------|---------------|
|      | S ≥ 1.6                  | S ≅ 1.3       | S ≅ 1.0       | S ≅ 0.6       | S ≅ 0.3       |
| 5    | 0.00 to 0.10             | 0.00 to 0.08  | 0.00 to 0.06  | 0.00 to 0.04  | 0.00 to 0.02  |
| 4    | 0.10+ to 0.20            | 0.08+ to 0.16 | 0.06+ to 0.12 | 0.04+ to 0.08 | 0.02+ to 0.04 |
| 3    | 0.20+ to 0.30            | 0.16+ to 0.24 | 0.12+ to 0.18 | 0.08+ to 0.12 | 0.04+ to 0.06 |
| 2    | 0.30+ to 0.40            | 0.24+ to 0.32 | 0.18+ to 0.24 | 0.12+ to 0.16 | 0.06+ to 0.08 |
| 1    | 0.40+ to 0.60            | 0.32+ to 0.48 | 0.24+ to 0.36 | 0.16+ to 0.24 | 0.08+ to 0.12 |
| 0    | Greater than             | Greater than  | Greater than  | Greater than  | Greater than  |
|      | 0.60                     | 0.48          | 0.36          | 0.24          | 0.12          |
| •    |                          |               |               |               | (5)           |

If more than half the candidates in a Centre score less than 2 marks for accuracy, try 1.70 as a standard value.

If this produces no improvement, examine the candidates' values to see if there is a suitable average.

- Give one **mark** for a **statement** referring to heating to constant mass or words (a) to that effect (Accept ±0.02 g as constant mass. N.B. This mark is for understanding the concept - not a reflection of the numbers in Table 1.1 (1)
- Give **one mark** for correctly calculating the mas of crystals used. (b) (Line 2 – Line 1 of Table) (1)
- Give one mark for correctly calculating the mass of water driven from the (c) crystals (Line 2 – lower value from Lines 3 or 4 of Table) (1)
- Give one mark for calculating the water driven from the crystals as a % by (d) mass.

answer (c) × 100 (Ignore evaluation unless no working is shown)

Total for Question 1 = 10

| Page 2 | Mark Scheme               | Syllabus | Paper |
|--------|---------------------------|----------|-------|
|        | CHEMISTRY – NOVEMBER 2003 | 9701     | 3     |

### **Question 2**

#### Table 2.1

Give **one mark** if both weighings (1<sup>st</sup> two lines of Table 2.1) are to 2 dp or better and there is no error in subtraction (1)

#### **Titration Table 2.2**

Give **one mark** if all final burette readings (except any labelled Rough) are to 2 dp and the readings are in the correct places in the table. Do **not** give this mark if "impossible" initial or final burette readings (e.g. 23.47 cm<sup>3</sup>) are given

Give one mark if there are two titres within 0.10 cm<sup>3</sup> and a "correct" average has been calculated.

## See section (f) for acceptable averages

The subtraction of a Rough value need only be checked when the Rough value has been included in the selection of titres for calculating the average.

Do not give this mark if there is an error in subtraction.

### (2)

### Accuracy

## See section (g). Adopt procedure (ii) in (h) for any suspect Supervisor's result

From the Supervisor's titre calculate to 2 decimal places)

$$\frac{3.50}{\text{mass of crystals dissolved}} \times \text{titre}$$

Record this value as a ringed total below Table 2.2

Calculate the same ration to 2 dp for each candidate and compare with that calculated for the Supervisor.

The spread penalty referred to in (g) of Standing Instructions may have to be applied using the table below

| Accuracy Marks                |                   |  |  |  |
|-------------------------------|-------------------|--|--|--|
| Mark Difference to Supervisor |                   |  |  |  |
| 6                             | Up to 0.20        |  |  |  |
| 5                             | 0.20+ to 0.25     |  |  |  |
| 4                             | 0.25+ to 0.30     |  |  |  |
| 3                             | 0.30+ to 0.50     |  |  |  |
| 2                             | 0.50+ to 1.00     |  |  |  |
| 1                             | 1.00+ to 2.00     |  |  |  |
| 0                             | Greater than 2.00 |  |  |  |

| Spread Penalty             |           |  |  |  |
|----------------------------|-----------|--|--|--|
| Range used/cm <sup>3</sup> | Deduction |  |  |  |
| 0.20+ to 0.25              | 1         |  |  |  |
| 0.25+ to 0.30              | 2         |  |  |  |
| 0.30+ to 0.40              | 3         |  |  |  |
| 0.40+ to 0.50              | 4         |  |  |  |
| 0.50+ to 0.70              | 5         |  |  |  |
| Greater than 0.70          | 6         |  |  |  |
|                            |           |  |  |  |

If the Supervisor provided no titration details – see two possible approaches to assigning accuracy marks described at the top of page 3

| Page 3 | Mark Scheme               | Syllabus | Paper |
|--------|---------------------------|----------|-------|
|        | CHEMISTRY – NOVEMBER 2003 | 9701     | 3     |

### Action to be taken when no Titre results are provided by the Supervisor

- (i) If the majority of candidates have similar "calculated titres" work with a suitable mean derived from the candidates' results.
- (ii) If the Supervisor obtained a "good" ratio when heating in expt 1 (1.5 1.7) Use the ratio/derived % of Na<sub>2</sub>CO<sub>3</sub> to calculate the expected titre if 3.50 g of crystals were dissolved into 250 cm<sup>3</sup> of solution

## In all calculations, ignore evaluation errors if working is shown

(a) Give one mark for 
$$\frac{\text{titre}}{1000} \times 0.1000$$
 (1)

(b) Give two marks for answer to (a) 
$$\times \frac{1}{2} \times \frac{250}{25}$$
 (one) (one)

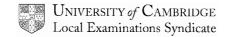
If 
$$\frac{250}{25}$$
 is missing from an otherwise correct answer in **(b)** but introduced in **(c)** allow the mark for **(c)** (1)

(e) Give one mark for 
$$\frac{\text{answer to (d)}}{\text{mass of crystals weighed}} \times 100$$
 (1)

**Total for Question 2 = 15** 

**Total for Paper = 25** 




# GCE A AND AS LEVEL

# MARK SCHEME

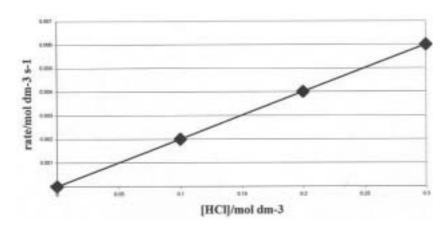
**MAXIMUM MARK: 60** 

**SYLLABUS/COMPONENT: 9701/04** 

CHEMISTRY
Theory 2 (Structured Questions)



| Page 1 | Mark Scheme                             | Syllabus | Paper |
|--------|-----------------------------------------|----------|-------|
|        | A/AS LEVEL EXAMINATIONS – NOVEMBER 2003 | 9701     | 4     |


1 (a) The power to which the **concentration** (of reagent) is raised (in the rate equation)

or: the value of a in the expression

rate = 
$$k[A]^a$$

(b) rate = 
$$k[CH_3COCH_3][H^{\dagger}]$$

(d)



line (through zero) clear points

(1) (1) **[2]** 

(1)

because the rate is determined by the slow step, which involves propanone +  $H^{\scriptscriptstyle +}$ , but not  $I_2$ 

any two points

(2) **[3]** 

(f) (i) titration with thiosulphate or colorimetry

- (1)
- (ii)  $k = rate/[propanone][H^+] = 3.3 \times 10^{-6}/(0.2 \times 0.5) = 3.3 \times 10^{-5}$
- (1)

(iii) units are mol<sup>-1</sup> dm<sup>3</sup>s<sup>-1</sup>

(1) [3] Total: 12

## 2 (a) (i) $K_a = [HCO_2^-][H^+]/HCO_2H]$

(1)

(ii) 
$$\sqrt{K_a[HCO_2H]} = \sqrt{1.77} \times 10^{-4} \times 0.05 =$$

 $2.97 \times 10^{-3}$  (3.0 x  $10^{-3}$ )

(iii) 
$$100 \times 2.97 \times 10^{-3} / 0.05$$

5.94% (6%)

(iv) pH = 
$$-\log_{10}(2.97 \times 10^{-3})$$

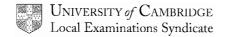
**(b)** 
$$pH = -log_{10}(0.05)$$

|   | Page | 2     | Mark Scheme                                                                                                                                                                | Syllabus                   | Paper                   |            |
|---|------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-------------------------|------------|
|   |      |       | A/AS LEVEL EXAMINATIONS – NOVEMBER 2003                                                                                                                                    | 9701                       | 4                       |            |
|   | (c)  | (i)   | $2HCO2H + Mg \rightarrow (HCO2)2Mg + H2$ $(or 2H+ + Mg \rightarrow Mg2+ + H2)$                                                                                             |                            | (1)                     |            |
|   |      | (ii)  | moles of $H^+ = 0.05 \times 20/1000$                                                                                                                                       | 1 x 10 <sup>-3</sup>       | (1)                     |            |
|   |      |       | moles of $H_2 = 1 \times 10^{-3}/2$ =                                                                                                                                      | 0.5 x 10 <sup>-3</sup>     |                         |            |
|   |      |       | <u>-</u>                                                                                                                                                                   | 12 cm³<br>12 cm³           | (1)                     |            |
|   |      | (iii) | (rate $\alpha$ [H <sup>+</sup> ]) lower [H <sup>+</sup> ] in methanoic acid <i>or</i> HCO <sub>2</sub> slowly/partially                                                    | H dissociates              | s<br>(1)                |            |
|   |      | (iv)  | the equilibrium $(HCO_2H \Rightarrow HCO_2^- + H^+)$ continually right as $H^+$ is used up                                                                                 | shifts to the              | (1)<br>Tota             | [5<br>I: 1 |
| } | (a)  | (i)   | $MnO_4^- + 8H^+ + 5Fe^{2+} \rightarrow Mn^{2+} + 4H_2O + 5Fe^{3+}$<br>$[or\ MnO_4^- + 4H^+ + 3Fe^{2+} \rightarrow MnO_2 + 3Fe^{3+} + 2H_2O]$<br>(reactants + products) + b | `                          | 1) + (1)                |            |
|   |      | (ii)  | $Cr_2O_7^{2-} + 2H^+ + 3SO_2 \rightarrow 2Cr^{3+} + 3SO_4^{2-} + H_2O$                                                                                                     | (1                         | ) + (1)                 | [4         |
|   |      |       | (or molecular equations including the counter ions                                                                                                                         | K⁺ and SO₄²                | ?-)                     |            |
|   | (b)  | (i)   | purple                                                                                                                                                                     |                            | (1)                     |            |
|   |      | (ii)  | the first (permanent) pink colour (from a colourless                                                                                                                       | s solution)                | (1)                     |            |
|   |      |       | $n(MnO_4^-) = 0.01 \times 14/1000 = 1.4 \times 10^{-4}$                                                                                                                    |                            | (1)                     |            |
|   |      |       | $n(Fe^{2+}) = 5 \times 1.4 \times 10^{-4}$ = 7 x 10 <sup>-4</sup>                                                                                                          |                            |                         |            |
|   |      |       | FeSO <sub>4</sub> = 55.8 + 32.1 + 64 = 151.9                                                                                                                               |                            | (1)                     |            |
|   |      |       | so mass = $151.9 \times 7 \times 10^{-4}$ = <b>0.106</b> g                                                                                                                 |                            | (1)                     | [5         |
|   | (c)  | (i)   | to carry O <sub>2</sub> from lungs to muscles/tissues                                                                                                                      |                            |                         |            |
|   |      |       | the $O_2$ molecule is a ligand attached to the Fe ator haemoglobin                                                                                                         | m/F <sup>e2</sup> + ion in | (1)                     |            |
|   |      | (ii)  | CO exchanges with O <sub>2</sub> and forms a <b>stronger ligar</b>                                                                                                         |                            | [1]<br> : <b>12 m</b> a | [3<br>x 1  |
| Ļ | (a)  |       | phenol, ester, arene/bezene ring an                                                                                                                                        | y two (1)                  | + (1)                   | [2         |
|   | (b)  | (i)   | $Na^{+-}O-C_6H_4-CO_2C_2H_5$                                                                                                                                               |                            | (1)                     |            |
|   |      | (ii)  | $Na^{+-}O-C_6H_4-CO_2^-Na^+$ $\checkmark$ $C_2H_5OH$                                                                                                                       | ✓                          | (2)                     |            |
|   |      | (iii) | HO—CO <sub>2</sub> CH <sub>2</sub> CH <sub>3</sub>                                                                                                                         |                            |                         |            |

https://xtremepape.rs/

|   | Page | 3        | Mark Scheme Syllabus  A/AS LEVEL EXAMINATIONS – NOVEMBER 2003 9701                                                                                                               | Paper<br>4          |              |
|---|------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|--------------|
|   |      | <u> </u> |                                                                                                                                                                                  |                     |              |
|   | (c)  | (i)      | acidity: G > E > F                                                                                                                                                               | (1)                 |              |
|   |      | (ii)     | only G reacts/gives off CO <sub>2</sub> with Na <sub>2</sub> CO <sub>3</sub>                                                                                                     | (1)                 |              |
|   |      |          | E and G both dissolve in NaOH(aq)                                                                                                                                                | (1)<br><b>Tot</b> a | [3]<br>il: 9 |
| 5 | (a)  |          | reagents: NaOH + I <sub>2</sub>                                                                                                                                                  | (1)                 |              |
|   |      |          | observations: yellow solid/ppt. with H and nothing with L.                                                                                                                       | (1)                 | [2]          |
|   | (b)  |          | J is more acidic than propanoic acid                                                                                                                                             | (1)                 |              |
|   |      |          | chlorine is electrogegative/electron-withdrawing                                                                                                                                 | (1)                 | [2]          |
|   | (c)  |          | $NH_{2}CH(CH_{3})CO_{2}H + (Na^{\dagger})OH \longrightarrow \begin{array}{c} H & H & O \\   &   & \  \\ N-C-C-O^{-}(Na^{\dagger}) + & H_{2}O \\   &   \\ H & CH_{3} \end{array}$ |                     |              |
|   |      |          | balancing<br>displayed formula                                                                                                                                                   | (1)<br>(1)          | [2]          |
|   | (d)  |          | +NH <sub>3</sub> CH(CH <sub>3</sub> )CO <sub>2</sub> <sup>-</sup>                                                                                                                | (1)                 | [1]          |
|   | (e)  | (i)      | peptide <i>or</i> amide                                                                                                                                                          | (1)                 |              |
|   |      | (ii)     | H H O H H O                                                                                                                                                                      | (1)                 | [2]          |
|   | (f)  | (i)      | C <sub>6</sub> H₅COC <i>l</i>                                                                                                                                                    | (1)                 |              |
|   |      | (ii)     | HC1 or H <sub>2</sub> SO <sub>4</sub> or NaOH                                                                                                                                    | (1)                 |              |
|   |      |          | (aq) + heat/reflux                                                                                                                                                               | (1)<br>Tota         | [3]<br>I· 12 |
| 6 | (a)  | (i)      | $CaCO_3 \rightarrow CaO + CO_2$                                                                                                                                                  | (1)                 | ·· ·-        |
|   |      | (ii)     | $CaO + H_2O \rightarrow Ca(OH)_2$                                                                                                                                                | (1)                 | [2]          |
|   | (b)  |          | to reduce acidity/raise the pH of soil/neutralize acid soils                                                                                                                     | (1)                 | [1]          |
|   | (c)  |          | more stable down the group                                                                                                                                                       | (1)                 |              |
|   |      |          | (due to) larger cations                                                                                                                                                          | (1)                 |              |
|   |      |          | (hence) less polarization/distortion of CO <sub>3</sub> <sup>2-</sup>                                                                                                            | (1)<br>Tot          | [3]<br>al: 6 |




# GCE A AND AS LEVEL

# MARK SCHEME

MAXIMUM MARK: 30

**SYLLABUS/COMPONENT: 9701/05** 

CHEMISTRY Practical 2



| Page 1 | Mark Scheme                             | Syllabus | Paper |
|--------|-----------------------------------------|----------|-------|
|        | A/AS LEVEL EXAMINATIONS – NOVEMBER 2003 | 9701     | 5     |

N.B. Boxed references within this marking scheme relate to the accompanying booklet of Standing Instructions

#### **Question 1**

Experiment 1

#### **Tables 1.1 and 1.2**

Give **one mark** if all weighings are to at least two decimal places, temperatures to at least one decimal place and the subtraction is correct in each table. (1)

## Table 1.2 – Accuracy

Calculate  $\frac{\text{temperature rise}}{\text{mass of FB2}}$  for the Supervisors values – work to 2 d.p. Record this

one the front of the Supervisor's script and as a ringed total below Table 1.2 on each Candidate's script.

Calculate the same ratio for each candidate and calculate the difference to the Supervisor value. Award accuracy marks for differences as follows:

| Mark Difference / °C |                   |  |
|----------------------|-------------------|--|
| 4 0.00 to 0.15       |                   |  |
| 3                    | 0.15+ to 0.20     |  |
| 2                    | 0.20+ to 0.30     |  |
| 1                    | 0.30+ to 0.45     |  |
| 0                    | Greater than 0.45 |  |

(4)

- (a) Give one mark for  $50 \times 4.3 \times \Delta t$  and appropriate unit (J/kJ)

  No mass of sodium carbonate to be included. Ignore sign in (a) (1)
- (b) Give **one mark** for a calculation showing moles of HC*l* and moles of sodim carbonate (<u>correct use of 106</u>) **and**Reference to 2:1 ratio from the equation (1)
- (c) Give one mark for  $\frac{\text{answer to (a)}}{\text{correctly calculated moles of Na<sub>2</sub>CO<sub>3</sub>}}$  or

answer to (a) if  $Na_2CO_3$  stated to be in excess

#### and one mark for

an answer correct to 3 significant figures using the numerical values in the expression in (c) (or correct value from (a) and (b) if no working given in (c)) (Do not penalise use of moles of  $Na_2CO_3$  carried in calculator memory from (b))

and sign consistent with experimental results (+ sign required for endothermic reactions)

and unit (J mol<sup>-1</sup> or kJ mol<sup>-1</sup>)

The second mark can be given providing the answer to (a) has been divided by a value for moles of  $Na_2CO_3$  or moles of HCl calculated by the candidate.(2)

| Page 2 | Mark Scheme                             | Syllabus | Paper |
|--------|-----------------------------------------|----------|-------|
|        | A/AS LEVEL EXAMINATIONS – NOVEMBER 2003 | 9701     | 5     |

### Experiment 2

#### **Table 1.3 and 1.4**

Give **one mark** if all weighings are to at least two decimal places, temperatures to at least one decimal place and the subtraction is correct in each table. (1)

## Table 1.4 – Accuracy

Calculate temperature rise for the Supervisor's values – work to 2 d.p. Record this

on the front of the Supervisor's script and as a ringed total below Table 1.4 on each Candidate's script.

Calculate the same ratio for each candidate and calculate the difference to the Supervisor's value. Award accuracy marks for differences as follows:

| Mark | Difference / °C   |  |
|------|-------------------|--|
| 4    | 0.00 to 0.11      |  |
| 3    | 0.10+ to 0.20     |  |
| 2    | 0.20+ to 0.30     |  |
| 1    | 0.30+ to 0.50     |  |
| 0    | Greater than 0.50 |  |

(4)

(d) Give one mark for 50 x 4.3 x  $\triangle$ t and

appropriate unit (J/kJ)
unless already penalised in (a)
Ignore sign in (d) (1)

(e) Give one mark for  $\frac{\text{mass of NaHCO}_3}{84}$ 

Do not penalise a repeat error in calculating M<sub>r</sub>

e.g. repeated use of an incorrect  $A_r$  (1)

(f) Give one mark for  $\frac{\text{answer to (d)}}{\text{answer to (e)}}$ 

#### and one mark for

an answer correct to 3 significant figures using the numerical values in the expression in **(f)** 

(Do not penalise use of moles of HaHCO<sub>3</sub> carried in calculator memory from (e)) and sign consistent with experimental results (+ sign required for endothermic reactions) and unit (J  $mol^{-1}$  or  $kJ^{-1}$ )

Do not penalise if missing mol<sup>-1</sup> is only error and already penalised in (c)

The second mark can be given providing the answer to **(d)** has been divided by a value for moles of Na<sub>2</sub>CO<sub>3</sub> or moles of HC*l*. (2)

(g) Give one mark for use of  $\Delta H_1$  and  $2\Delta H_2$ .

Give **one mark** for  $\Delta H_1 - 2 \Delta H_2$  in the final part of the calculation

Watch out for sign errors if the candidate has not stated  $\Delta H_1 - 2\Delta H_2$  (2)

| Page 3 | Mark Scheme                             | Syllabus | Paper |
|--------|-----------------------------------------|----------|-------|
|        | A/AS LEVEL EXAMINATIONS – NOVEMBER 2003 | 9701     | 5     |

#### ASSESSMENT OF PLANNING SKILLS

Look for the following points in nay part of the plan or carrying out of the plan and award **one mark** for each point

- (i) Weights a sample, adds to known volume of water and measures change in temperature.
- (ii) Calculates energy change for volume of solution used Numerical answers are required in parts
- (iii) Converts mass NaHCO<sub>3</sub> into moles.

(ii) to (iv).

- (iv) Calculates  $\Delta H_4$  including sign (unless already penalised).
- (v) Adds 2  $\triangle H_4$  to the answer to **(g)**. Ignore any reference to  $\triangle H_5$  and  $\triangle H_6$  etc. by the candidate

**Total for Question 1: 25** 

#### **Question 2**

### **ASSESSMENT OF PLANNING SKILLS**

### **GRID 1A**

Adds HC1/H<sub>2</sub>SO<sub>4</sub> or any soluble chloride or soluble sulphate (or KI) to all three solutions

No precipitate formed with FB 5 and with FB 6 (No change or no reaction acceptable)

White precipitate (yellow with KI

White precipitate (yellow with KI) forms with **FB 7** Indicated the presence of Pb<sup>2+</sup>

(Aqueous) ammonia added to the **two solutions** where no precipitate formed with the first reagent (**FB 5** and **FB 6**)

This mark is lost if 2<sup>nd</sup> reagent is added to all three solutions

FB 5 gives a white precipitate soluble in excess ammonia Indicates the presence of Zn<sup>2+</sup> FB 6 gives a white precipitate insoluble in excess ammonia Indicates the presence of At<sup>3+</sup>

**GRID 1B** 

Adds aqueous ammonia to all three solutions

White precipitate formed with all three solutions

White precipitate formed in **FB 5** dissolves in excess ammonia solution.

Indicates the presence of Zn<sup>2+</sup>

Adds HC1/H<sub>2</sub>SO<sub>4</sub> or any soluble chloride or soluble sulphate (or KI) to the two solutions where the precipitate formed with aqueous ammonia did not dissolve in excess of the reagent.

This mark is lost if 2<sup>nd</sup> reagent is

added to all three solutions

**FB 7** gives a white precipitate (yellow with KI) Indicates the presence of Pb<sup>2+</sup> There is no precipitate/no change/no reaction with **FB 6** Indicates the presence of At<sup>3+</sup>

(5)

5

| Page 4 | Mark Scheme                             | Syllabus | Paper |
|--------|-----------------------------------------|----------|-------|
|        | A/AS LEVEL EXAMINATIONS – NOVEMBER 2003 | 9701     | 5     |

### **GRID 2A**

Adds Na<sub>2</sub>CO<sub>3</sub> or NaHCO<sub>3</sub> to all three solutions

White precipitates formed with all three solutions

Effervescence or CO<sub>2</sub> or gas turning lime water milky with **FB 6** Indicates the presence of A*l*<sup>3+</sup>

(Aqueous) ammonia added to the **two solutions** where no effervescence was seen with the first reagent (**FB 5** and **FB 7**)

This mark is lost if 2<sup>nd</sup> reagent is

**FB 5** gives a white precipitate soluble in excess ammonia Indicates the presence of Zn<sup>2+</sup>

**FB 7** gives a white precipitate insoluble in excess ammonia Indicates the presence of Pb<sup>2+</sup>

#### **GRID 2B**

Adds Na<sub>2</sub>CO<sub>3</sub> or NaHCO<sub>3</sub> to all three solutions

added to all three solutions

White precipitates formed with all three solutions

Effervescence or CO<sub>2</sub> or gas turning lime water milky with **FB 6** Indicates the presence of A*l*<sup>3+</sup>

Adds HC1/H<sub>2</sub>SO<sub>4</sub> or any soluble Chloride or soluble sulphate (or KI) to the two solutions where no effervescence was seen with the first reagent (FB 5 and FB 7)

This mark is lost if 2<sup>nd</sup> reagent is added to all three solutions

**FB 7** gives a white precipitate (yellow with KI) indicates the presence of Pb<sup>2+</sup> There is no precipitate/no change/no reaction with **FB 5** 

Indicates the presence of Zn<sup>2+</sup>

(5)

#### **GRID 3A**

Adds HC1/H<sub>2</sub>SO<sub>4</sub> or any soluble chloride or soluble sulphate (or KI) to all three solutions

No precipitate formed with FB 5 and with FB 6 (No change or no reaction acceptable)

White precipitate (yellow with KI) forms with **FB 7** Indicates the presence of Pb<sup>2+</sup>

Adds Na<sub>2</sub>CO<sub>3</sub> to the **two solutions** where no precipitate
was seen with the first reagent
(FB 5 and FB 6)

This mark is lost if 2<sup>nd</sup> reagent is added to all three solutions

**FB 5** gives a white precipitate Indicates the presence of Zn<sup>2+</sup>

**FB 6** gives a (white precipitate and) effervescence, CO<sub>2</sub> or a gas giving white precipitate with lime water.

Indicates the presence of Al<sup>3+</sup>

5)

| Page 5 | Mark Scheme                             | Syllabus | Paper |
|--------|-----------------------------------------|----------|-------|
|        | A/AS LEVEL EXAMINATIONS – NOVEMBER 2003 | 9701     | 5     |

### **GRID 3B**

| Adds aqueous ammonia to all three solutions                                                                        | ✓        | White precipitate formed with all three solutions                                                                             | <b></b> ✓ |
|--------------------------------------------------------------------------------------------------------------------|----------|-------------------------------------------------------------------------------------------------------------------------------|-----------|
|                                                                                                                    |          | White precipitate formed in <b>FB 5</b> dissolves in excess ammonia solution. Indicates the presence of Zn <sup>2+</sup>      | <b>✓</b>  |
| Adds Na2CO3 or NaHCO3 to the two solutions where the precipitate formed with aqueous                               |          | <b>FB 7</b> gives a white precipitate Indicates the presence of Pb <sup>2+</sup>                                              |           |
| ammonia did not dissolve in excess of the reagent (FB 6 and FB 7)  This mark is lost if 2 <sup>nd</sup> reagent is | <b>✓</b> | <b>FB 6</b> gives a (white precipitate and) effervescence, CO <sub>2</sub> or a gas giving white precipitate with lime water. | <b>✓</b>  |
| added to all three solutions                                                                                       |          | Indicates the presence of Ati3+                                                                                               |           |

### NB:

"Method marks" may be awarded from the plan (page 8) or from the observation table (page 9).

Observation marks are awarded from page 9.

Marks are given for positive experimental identification – not for identification by elimination UNLESS the tests have been fully explained in theory in the Plan on page 8.

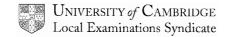
Reduce the marks awarded by one for each additional reagent used.

Ignore ions listed in the conclusion.

**Total for Question 2: 5** 

**Total for Paper: 30** 




# GCE A AND AS LEVEL

# MARK SCHEME

MAXIMUM MARK: 40

**SYLLABUS/COMPONENT: 9701/06** 

CHEMISTRY Options



| Page 1 | Mark Scheme                             | Syllabus | Paper |
|--------|-----------------------------------------|----------|-------|
|        | A/AS LEVEL EXAMINATIONS – NOVEMBER 2003 | 9701     | 6     |

# **Biochemistry**

| 1 | (a) |       | Enzymes<br>globular proteins                                                                                                                                                          | (1)<br>(1) | [2]     |
|---|-----|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------|
|   | (b) | (i)   | Monasaccharides/simple sugars/glucose                                                                                                                                                 | (1)        |         |
|   |     | (ii)  | Glycerol and fatty (or carboxylic) acids/carboxylates – both needed                                                                                                                   | l (1)      |         |
|   |     | (iii) | Amino acids                                                                                                                                                                           | (1)        |         |
|   |     | (iv)  | Deoxyribose/ribose, bases/ nucleotides, phosphate                                                                                                                                     | (1)        | [4]     |
|   | (c) |       | CH <sub>2</sub> OH CH <sub>2</sub> (CH <sub>2</sub> ),CO <sub>2</sub> H or RCO <sub>2</sub> H  CHOH  Need to show – C once in either fatty acid or amino acid  CH <sub>2</sub> OH  OH | 2x(1)      |         |
|   |     |       | H <sub>2</sub> NCHRCO <sub>2</sub> H (or the zwitterions)                                                                                                                             | (1)        |         |
|   |     |       | NOT CO <sub>2</sub> + H <sub>2</sub> O                                                                                                                                                |            |         |
|   |     |       | Mark consequentially on (b)(ii) and (b)(iii)                                                                                                                                          |            | [3]     |
|   | (d) |       | Hydrolysis                                                                                                                                                                            | (1)        |         |
|   |     |       | NOT Hydration                                                                                                                                                                         |            |         |
| 2 | (a) |       | UCAG are bases<br>found in m-RNA                                                                                                                                                      | (1)<br>(1) |         |
|   |     |       | Phe, Leu etc. are amino acids                                                                                                                                                         | (1)        |         |
|   |     |       | Sequence of amino acids determines the protein/peptide                                                                                                                                | (1)        |         |
|   |     |       | This is called the 'triplet code'/codon                                                                                                                                               | (1)        |         |
|   |     |       | Three bases correspond to one amino acid or 4 <sup>3</sup> argument                                                                                                                   | (1)        |         |
|   |     |       | Hence sequence of bases in nucleic acid determines the sequence of amino acids in the protein/transcription takes place                                                               | (1)        |         |
|   |     |       | The chief role of DNA/RNA/nucleic acids is in protein synthesis                                                                                                                       | (1)        |         |
|   |     |       | Code is not unique/more than one base sequence for given amino acid                                                                                                                   | (1)        | [max 8] |
|   | (b) |       | Instructions to start a protein molecule                                                                                                                                              | (1)        |         |
|   |     |       | Instructions to end the molecule                                                                                                                                                      | (1)        | [2]     |

| Page 2 | Mark Scheme                             | Syllabus | Paper |
|--------|-----------------------------------------|----------|-------|
|        | A/AS LEVEL EXAMINATIONS – NOVEMBER 2003 | 9701     | 6     |

## **Environmental Chemistry**

**3** (a) (i) 2:1 clay with two layers of silicate and one of aluminium oxide. (1)

Units held by water to adjacent silicate units/lamellae by hydrogen bonding

(ii) Regular substitution of A*l* for Si has occurred within the silicate layers (1)

This leads to cation deficiency (1)

which is balanced by the presence of  $K^{+}$  on the surface of the clay. (1) [5]

 (b) (i) Ammonium and potassium ions are held firmly at the surface of the soil as a result of ion substitution within the clay OR the presence of surface oxides in silicate structures OR the presence of humus.

(ii)  $SO_2 + NO_2 + H_2O \rightarrow H_2SO_4 + NO$  (1) Allow two equations  $SO_2 + H_2O \rightarrow H_2SO_3$  2NO<sub>2</sub> + H<sub>2</sub>O  $\rightarrow$  HNO<sub>2</sub> + HNO<sub>3</sub> both needed

(iii) Hydrogen ions can also be held at exchange sites (1) and in high enough concentration (1)

will displace the other cations from the surface (1) can then be washed away. (1)

4 (a) (i) Temperature much be high enough for efficient combustion (1)

If chlorinated waste is present when dioxins may form (1)

Temperature must be > 800°C to destroy them (1)

(ii) Organic matter may be suspended in the water (1)

 $A\hat{l}^{3+}$ (aq) precipitates as the hydroxide settling the organic matter (1)

which must be removed otherwise toxic chlorinated organic matter may form

(1) **[6]** 

[max 5]

(1)

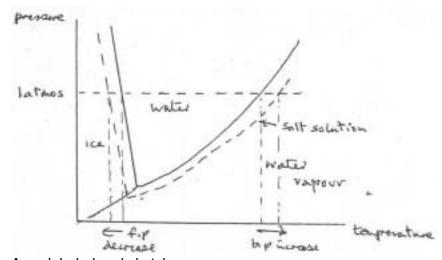
(1)

(b) (i) Phosphates are added to soften hard water (1)

by forming complexes with calcium and magnesium ions (1)

(ii) Excess phosphate released into waterways encourages growth (1) of algae

Eutrophication can then occur (1)


Increases BOD (1)

[max 2] **[4]** 

| Page 3 | Mark Scheme                             | Syllabus | Paper |
|--------|-----------------------------------------|----------|-------|
|        | A/AS LEVEL EXAMINATIONS – NOVEMBER 2003 | 9701     | 6     |

## Phase Equilibria

5 (a)



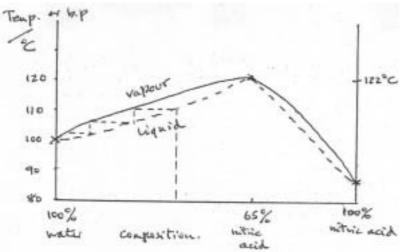
Axes labeled and sketch (1) areas labeled (1)

Slope of ice/water line is atypical (1) since the solid (ice) is less dense than water/floats on water (1)

High pressure favours a smaller volume of liquid (1) [max 4]

(b) 1 atmosphere (or other labeled pressure) line drawn (1)

Salt solution line drawn (1)


F.p. decrease **and** b.p. increase (1) lines drawn on diagram (1) **[4]** 

(c) At any temperature vapour pressure of water is greater than salt soln (1)

Rate of evaporation is proportional to vapour pressure (1)

lons attract water molecules making evaporation more difficult. (1) [max 2]

6 (a)



Sketch, (1) two labels, (1) three points (1) axes labeled (1)

[4]

|    | Page  | 4     | Mark Scheme                                                                                                 | Syllabus       | Paper |     |
|----|-------|-------|-------------------------------------------------------------------------------------------------------------|----------------|-------|-----|
|    |       |       | A/AS LEVEL EXAMINATIONS – NOVEMBER 2003                                                                     | 9701           | 6     |     |
|    | (b)   | (i)   | Pure water lines on graph (1                                                                                | )              | (1)   |     |
|    |       | (ii)  | Azeotrope (or 65% nitric acid)                                                                              | ,              | (1)   |     |
|    |       |       | This may be consequential on (a) if candidates vertiwrong                                                   | cal line is    |       | [3] |
|    | (c)   | (i)   | $V = n_A p_A$ etc (or in words) (allow proportionality)                                                     |                | (1)   |     |
|    |       | (ii)  | Any 2 of: Nitric acid and water react/attract each other more s than molecules of each/mixing is exothermic | strongly       | (1)   |     |
|    |       |       | Show negative deviation from Raoult's law                                                                   |                | (1)   |     |
|    |       |       | $HNO_3 + H_2O \rightarrow H_3O^+ + NO_3^- OR$ (or equivalent)                                               |                | (1)   | [3] |
| Sp | ectro | scopy | <i>(</i>                                                                                                    |                |       |     |
| 7  | (a)   | (i)   | Protons possess nuclear spin                                                                                |                | (1)   |     |
|    |       |       | This generates a magnetic moment                                                                            |                | (1)   |     |
|    |       |       | This moment can align with or against an external m                                                         | nagnetic field | (1)   |     |
|    |       |       | This gives two energy                                                                                       |                | (1)   |     |
|    |       | (ii)  | External magnetic field may be modified by moment protons in the molecule                                   | ts from other  | (1)   |     |
|    |       |       | Example from ethanol e.g. comment on 1 : 2 : 1 spli                                                         | tting pattern  | (1)   |     |
|    |       |       | Ha Hb<br>Ha-C-C-OHE<br>Ha Hb                                                                                |                |       | [6] |
|    | (b)   |       | H, C Orrect displayed formula                                                                               |                | (1)   |     |
|    |       |       | 3, 2 1 for each correct proton (since if 3 are right, 4)                                                    | must be!)      | (3)   | [4] |
|    |       |       | t, = 7.10. cash contout proton (onloon o are right, +1                                                      |                | (5)   | ۲,1 |

|    |        |       | A/AS LE                | VEL EXAMINAT                         | IONS - NOVEN                                       | 1BER 2003                         | 9701                                  | 6           |                       |
|----|--------|-------|------------------------|--------------------------------------|----------------------------------------------------|-----------------------------------|---------------------------------------|-------------|-----------------------|
| 8  | (a)    |       | I.r. peak              | at 1720 cm <sup>-1</sup> s           | uggests C=O                                        |                                   |                                       | (1)         |                       |
|    |        |       | С<br>Н<br>О            | %<br>66.7<br>11.1<br>22.2            | %/A <sub>r</sub><br>5.55<br>11.1<br>1.4            | Ratio<br>4<br>8<br>1              | gives C <sub>4</sub> H <sub>8</sub> O | (1)         |                       |
|    |        |       |                        |                                      | nolecular form                                     | ·                                 |                                       | (1)         |                       |
|    |        |       |                        |                                      | 57 is (M-CH₃) (                                    |                                   | ,                                     | (1)         |                       |
|    |        |       | Mass spe               |                                      | 43 could be (N                                     |                                   | -C <sub>2</sub> H <sub>5</sub> )      | (1)         |                       |
|    |        |       | E is CH <sub>3</sub> 0 | CH <sub>2</sub> COCH <sup>3</sup> or | CH <sub>3</sub> CH <sub>2</sub> CH <sub>2</sub> CH | Ю                                 |                                       | (1)         | [max 5]               |
|    | (b)    | (i)   | Non-inva               | sive                                 |                                                    |                                   |                                       | (1)         |                       |
|    |        |       | Flesh is t             | ransparent to ı                      | adio waves                                         |                                   |                                       | (1)         |                       |
|    |        |       | Low ener               | rgy/no tissue d                      | amage                                              |                                   |                                       | (1)         |                       |
|    |        |       | May be 't              | tuned' to partic                     | ular protons/ty <sub> </sub>                       | oes of tissue                     | e                                     | (1)         | [max 3]               |
|    |        | (ii)  | Standard               | ls are prepared                      | I                                                  |                                   |                                       | (1)         |                       |
|    |        |       | Calibratio             | on graph produ                       | ced                                                |                                   |                                       | (1)         |                       |
|    |        |       | Sample o               | diluted                              |                                                    |                                   |                                       | (1)         |                       |
|    |        |       | Concentr               | ation read fron                      | n calibration gr                                   | aph                               |                                       | (1)<br>[max | [max 3]<br>5 for (b)] |
| Tr | ansiti | on El | ements                 |                                      |                                                    |                                   |                                       |             |                       |
| 9  | (a)    |       | Colour is              | due to the abs                       | sorption of visib                                  | le light                          |                                       | (1)         |                       |
|    |        |       | Atom nee               | eds vacancy(ie                       | s) in the d-orbi                                   | tals                              |                                       | (1)         |                       |
|    |        |       | The d-ort              | oitals are split i                   | nto two energy                                     | levels by li                      | gands                                 | (1)         |                       |
|    |        |       |                        | •                                    | ote electrons fr<br>transition meta                |                                   | upper d-orbitals<br>lie in visible    | s (1)       | [max3]                |
|    | (b)    |       | Ligand ex              | xchange betwe                        | en chloride an                                     | d water occ                       | urs                                   |             |                       |
|    |        |       | OR<br>Gree             | en H <sub>2</sub> 0                  | ب کام در الله الله الله الله الله الله الله الل    | H <sub>L</sub> o H <sub>c</sub> o | 24<br>OHL + 20                        | (1)         |                       |
|    |        |       | d-orbital<br>ligands   | energy gap wit                       | h C $arGamma$ ligands is                           | different to                      | that with H <sub>2</sub> O            | (1)         | [2]                   |

Mark Scheme

Syllabus

Paper

Page 5

| Page | 6     | Mark Scheme A/AS LEVEL EXAMINATIONS – NOVEMBER 2003                                                                                                    | Syllabus<br>9701 | Paper<br>6 |     |
|------|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------|-----|
| (c)  |       | $V({\rm III})$ is $V^{3+}$ (or $[V(H_2O)_6]^{3+}$ ) and is green                                                                                       |                  | (1)        |     |
|      |       | V(IV) is VO <sup>2+</sup> (aq) and is blue NOT V <sup>4+</sup>                                                                                         |                  | (1)        |     |
| (d)  | (i)   | $MnO_4^-/Mn^{2+}$ is +1,52V, higher than $VO_2^+/VO^{2+}$ so fire                                                                                      | nal state is 5   | (1)        |     |
|      | (ii)  | moles of $e^- = 0.02 \times 5 \times 20/1000 = 0.002$                                                                                                  |                  | (1)        |     |
|      |       | Hence 2 moles of electrons are used per mole of values Change is from $V(\mathrm{III})$ to $V(\mathrm{V})$                                             | anadium          |            |     |
|      | (iii) | x is 1, hence VOCl                                                                                                                                     |                  | (1)        | I   |
| (a)  |       | Stainless steel, with iron (+ example use) Brass, with zinc (+ example use) Accept also bronze (Cu + Sn), duralumin (Cu+Al), c (Cu+Ni) nicrome (Ni+Cr) | upronickel       | (1)<br>(1) |     |
|      |       | NB two correct pairs of metals scores (1) OR two correct alloys and uses scores (1)                                                                    |                  |            | I   |
| (b)  | (i)   | $Cr_2O_7^{2-} + H_2O = 2CrO_4^{2-} + 2H^+$ $Ba^{2+}$ $BaCrO_4(s)$                                                                                      |                  | (1)        |     |
|      |       | yellow  Equilibrium shifts to the right as $CrO_4^{2-}$ ions are rem                                                                                   | royad and        | (1)        |     |
|      |       | hence the solution becomes more acidic                                                                                                                 | ioved and        | (1)        |     |
|      | (ii)  | $NH_3 + H_2O \rightleftharpoons NH_4^+ + OH^-$<br>(i.e. ammonia solution contains $OH^-$ ions)                                                         |                  | (1)        |     |
|      |       | CU <sup>2+</sup> + 2OH <sup>-</sup> + Cu(OH) <sub>2</sub> (pale blue ppte)                                                                             |                  | (1)        |     |
|      |       | Then $4NH_3 + Cu^{2+}(aq) = [Cu(NH_3)_4]^{2+}$ (deep blue so                                                                                           | lution)          | (1)        |     |
|      |       | NH <sub>3</sub> is a stronger ligand than H <sub>2</sub> O and displaces it                                                                            |                  | (1)        |     |
|      | (iii) | violet – $[Cr(H_2O)_6]^{3+} 3C \bar{t}$                                                                                                                |                  | (1)        |     |
|      |       | green – $[Cr(H_2O)_5 C\bar{t}]^{2+} 2C\bar{t}.H_2O$                                                                                                    |                  | (1)        | [ma |